12 research outputs found

    Impact of the dosimetry approach on the resulting 90Y radioembolization planned absorbed doses based on 99mTc-MAA SPEC T-CT: is there agreement between dosimetry methods?

    Get PDF
    Background: Prior radioembolization, a simulation using 99mTc-macroaggregated albumin as 90Y-microspheres surrogate is performed. Gamma scintigraphy images (planar, SPECT, or SPECT-CT) are acquired to evaluate intrahepatic 90Y-microspheres distribution and detect possible extrahepatic and lung shunting. These images may be used for pre-treatment dosimetry evaluation to calculate the 90Y activity that would get an optimal tumor response while sparing healthy tissues. Several dosimetry methods are available, but there is still no consensus on the best methodology to calculate absorbed doses. The goal of this study was to retrospectively evaluate the impact of using different dosimetry approaches on the resulting 90Y-radioembolization pre-treatment absorbed dose evaluation based on 99mTc-MAA images. Methods: Absorbed doses within volumes of interest resulting from partition model (PM) and 3D voxel dosimetry methods (3D-VDM) (dose-point kernel convolution and local deposition method) were evaluated. Additionally, a new “Multi-tumor Partition Model” (MTPM) was developed. The differences among dosimetry approaches were evaluated in terms of mean absorbed dose and dose volume histograms within the volumes of interest. Results: Differences in mean absorbed dose among dosimetry methods are higher in tumor volumes than in non-tumoral ones. The differences between MTPM and both 3D-VDM were substantially lower than those observed between PM and any 3D-VDM. A poor correlation and concordance were found between PM and the other studied dosimetry approaches. DVH obtained from either 3D-VDM are pretty similar in both healthy liver and individual tumors. Although no relevant global differences, in terms of absorbed dose in Gy, between both 3D-VDM were found, important voxel-by-voxel differences have been observed. Conclusions: Significant differences among the studied dosimetry approaches for 90Y-radioembolization treatments exist. Differences do not yield a substantial impact in treatment planning for healthy tissue but they do for tumoral liver. An individual segmentation and evaluation of the tumors is essential. In patients with multiple tumors, the application of PM is not optimal and the 3D-VDM or the new MTPM are suggested instead. If a 3D-VDM method is not available, MTPM is the best option. Furthermore, both 3D-VDM approaches may be indistinctly used

    Commissioning of small field size radiosurgery cones in a 6-MV flattening filter-free beam

    Get PDF
    This study aimed to describe the commissioning of small field size radiosurgery cones in a 6-MV flattening filter free (FFF) beam and report our measured values. Four radiosurgery cones of diameters 5, 10, 12.5, and 15Âżmm supplied by Elekta Medical were commissioned in a 6-MV FFF beam from an Elekta Versa linear accelerator. The extraction of a reference signal for measuring small fields in scanning mode is challenging. A transmission chamber was attached to the lower part of the collimators and used for percentage depth dose (PDD) and profile measurements in scanning mode with a stereotactic diode. Tissue-maximum ratios (TMR) and output factors (OF) for all collimators were measured with a stereotactic diode (IBA). TMR and the OF for the largest collimator were also acquired on a polystyrene phantom with a microionization chamber of 0.016Âżcm3 volume (PTW Freiburg PinPoint 3D). Measured TMR with diode and PinPoint microionization chamber agreed very well with differences smaller than 1% for depths below 20Âżcm, except for the smaller collimator, for which differences were always smaller than 2%. Calculated TMR were significantly different (up to 7%) from measured TMR. OF measured with diode and chamber showed a difference of 3.5%. The use of a transmission chamber allowed the measurement of the small-field dosimetric properties with a simple setup. The commissioning of radiosurgery cones in FFF beams has been performed with essentially the same procedures and recommended ..

    Hospital-based proton therapy implementation during the COVID pandemic: early clinical and research experience in a European academic institution

    Get PDF
    Introduction A rapid deploy of unexpected early impact of the COVID pandemic in Spain was described in 2020. Oncology practice was revised to facilitate decision-making regarding multimodal therapy for prevalent cancer types amenable to multidisciplinary treatment in which the radiotherapy component searched more efcient options in the setting of the COVID-19 pandemic, minimizing the risks to patients whilst aiming to guarantee cancer outcomes. Methods A novel Proton Beam Therapy (PBT), Unit activity was analyzed in the period of March 2020 to March 2021. Institutional urgent, strict and mandatory clinical care standards for early diagnosis and treatment of COVID-19 infection were stablished in the hospital following national health-authorities’ recommendations. The temporary trends of patients care and research projects proposals were registered. Results 3 out of 14 members of the professional staf involved in the PBR intra-hospital process had a positive test for COVID infection. Also, 4 out of 100 patients had positive tests before initiating PBT, and 7 out of 100 developed positive tests along the weekly mandatory special checkup performed during PBT to all patients. An update of clinical performance at the PBT Unit at CUN Madrid in the initial 500 patients treated with PBT in the period from March 2020 to November 2022 registers a distribution of 131 (26%) pediatric patients, 63 (12%) head and neck cancer and central nervous system neoplasms and 123 (24%) re-irradiation indications. In November 2022, the activity reached a plateau in terms of patients under treatment and the impact of COVID pandemic became sporadic and controlled by minor medical actions. At present, the clinical data are consistent with an academic practice prospectively (NCT05151952). Research projects and scientifc production was adapted to the pandemic evolution and its infuence upon professional time availability. Seven research projects based in public funding were activated in this period and preliminary data on molecular imaging guided proton therapy in brain tumors and post-irradiation patterns of blood biomarkers are reported. Conclusions Hospital-based PBT in European academic institutions was impacted by COVID-19 pandemic, although clinical and research activities were developed and sustained. In the post-pandemic era, the benefts of online learning will shape the future of proton therapy education

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments

    Is a Technetium-99m Macroaggregated Albumin Scan Essential in the Workup for Selective Internal Radiation Therapy with Yttrium-90? An Analysis of 532 Patients

    No full text
    Purpose: To determine if baseline patient, tumor, and pretreatment evaluation characteristics could help identify patients who require technetium-99m (99mTc) macroaggregated albumin (99mTc MAA) imaging before selective internal radiation therapy (SIRT). Materials and methods: In this retrospective analysis, 532 consecutive patients with primary (n = 248) or metastatic (n = 284) liver tumors were evaluated between 2006 and 2015. Variables were compared between patients in whom 99mTc MAA imaging results contraindicated/modified SIRT administration with yttrium-90 (90Y) resin microspheres and those who were treated as initially planned. The 99mTc MAA findings that contraindicated/modified SIRT were a lung shunt fraction (LSF) > 20%, gastrointestinal 99mTc MAA uptake, or a mismatch between 99mTc MAA uptake and intrahepatic tumor distribution. Results: LSF > 20% and gastrointestinal MAA uptake were observed in 7.5% and 3.9% of patients, respectively, and 11% presented a mismatch. Presence of a single lesion (odds ratio [OR] = 2.4) and vascular invasion (OR = 5.5) predicted LSF > 20%, and GI MAA uptake was predicted by the presence of liver metastases (OR = 3.7) and 99mTc MAA injection through the common/proper hepatic artery (OR = 4.7). Vascular invasion (OR = 4.1) was the only predictor of LSF > 20% and/or GI MAA uptake (sensitivity = 49.2%, specificity = 80.3%, negative predictive value = 92.4%). Previous antiangiogenic treatment (OR = 2.4) and presence of a single lesion (OR = 2.6) predicted mismatch. Conclusions: Imaging with 99mTc MAA is essential in SIRT workup because baseline characteristics may not adequately predict 99mTc MAA results. Nevertheless, the absence of vascular invasion potentially identifies a group of patients at low risk of SIRT contraindication/modification in whom performing SIRT in a single session (ie, pretreatment evaluation and SIRT on the same day) should be explored

    Impact of the dosimetry approach on the resulting 90Y radioembolization planned absorbed doses based on 99mTc-MAA SPEC T-CT: is there agreement between dosimetry methods?

    No full text
    Background: Prior radioembolization, a simulation using 99mTc-macroaggregated albumin as 90Y-microspheres surrogate is performed. Gamma scintigraphy images (planar, SPECT, or SPECT-CT) are acquired to evaluate intrahepatic 90Y-microspheres distribution and detect possible extrahepatic and lung shunting. These images may be used for pre-treatment dosimetry evaluation to calculate the 90Y activity that would get an optimal tumor response while sparing healthy tissues. Several dosimetry methods are available, but there is still no consensus on the best methodology to calculate absorbed doses. The goal of this study was to retrospectively evaluate the impact of using different dosimetry approaches on the resulting 90Y-radioembolization pre-treatment absorbed dose evaluation based on 99mTc-MAA images. Methods: Absorbed doses within volumes of interest resulting from partition model (PM) and 3D voxel dosimetry methods (3D-VDM) (dose-point kernel convolution and local deposition method) were evaluated. Additionally, a new “Multi-tumor Partition Model” (MTPM) was developed. The differences among dosimetry approaches were evaluated in terms of mean absorbed dose and dose volume histograms within the volumes of interest. Results: Differences in mean absorbed dose among dosimetry methods are higher in tumor volumes than in non-tumoral ones. The differences between MTPM and both 3D-VDM were substantially lower than those observed between PM and any 3D-VDM. A poor correlation and concordance were found between PM and the other studied dosimetry approaches. DVH obtained from either 3D-VDM are pretty similar in both healthy liver and individual tumors. Although no relevant global differences, in terms of absorbed dose in Gy, between both 3D-VDM were found, important voxel-by-voxel differences have been observed. Conclusions: Significant differences among the studied dosimetry approaches for 90Y-radioembolization treatments exist. Differences do not yield a substantial impact in treatment planning for healthy tissue but they do for tumoral liver. An individual segmentation and evaluation of the tumors is essential. In patients with multiple tumors, the application of PM is not optimal and the 3D-VDM or the new MTPM are suggested instead. If a 3D-VDM method is not available, MTPM is the best option. Furthermore, both 3D-VDM approaches may be indistinctly used

    Effective dose estimation for oncological and neurological PET/CT procedures

    No full text
    Background: The aim of this study was to retrospectively evaluate the patient effective dose (ED) for different PET/ CT procedures performed with a variety of PET radiopharmaceutical compounds. PET/CT studies of 210 patients were reviewed including Torso (n = 123), Whole body (WB) (n = 36), Head and Neck Tumor (HNT) (n = 10), and Brain (n = 41) protocols with 18FDG (n = 170), 11C-CHOL (n = 10), 18FDOPA (n = 10), 11C-MET (n = 10), and 18F-florbetapir (n = 10). ED was calculated using conversion factors applied to the radiotracer activity and to the CT dose-length product. Results: Total ED (mean ± SD) for Torso-11C-CHOL, Torso-18FDG, WB-18FDG, and HNT-18FDG protocols were 13.5 ± 2.2, 16.5 ± 4.5, 20.0 ± 5.6, and 15.4 ± 2.8 mSv, respectively, where CT represented 77, 62, 69, and 63% of the protocol ED, respectively. For 18FDG, 18FDOPA, 11C-MET, and 18F-florbetapir brain PET/CT studies, ED values (mean ± SD) were 6.4 ± 0.6, 4.6 ± 0.4, 5.2 ± 0.5, and 9.1 ± 0.4 mSv, respectively, and the corresponding CT contributions were 11, 14, 23, and 26%, respectively. In 18FDG PET/CT, variations in scan length and arm position produced significant differences in CT ED (p < 0.01). For dual-time-point imaging, the CT ED (mean ± SD) for the delayed scan was 3.8 ± 1.5 mSv. Conclusions: The mean ED for body and brain PET/CT protocols with different radiopharmaceuticals ranged between 4.6 and 20.0 mSv. The major contributor to total ED for body protocols is CT, whereas for brain studies, it is the PET radiopharmaceutical

    Significant dose reduction is feasible in FDG PET/CT protocols without compromising diagnostic quality

    No full text
    Purpose: To reduce the radiation dose to patients by optimizing oncological FDG PET/CT protocols. Methods: The baseline PET/CT protocol in our institution for oncological PET/CT examinations consisted of the administration of 5.18 MBq/kg of FDG and a CT acquisition with a reference current-time product of 120 mAs. In 2016, FDG activity was reduced to 4.44 and 3.70 MBq/kg and reference CT current-time-product was reduced to 100 and 80 mAs. 322 patients scanned with different protocols were retrospectively evaluated. For each patient, effective dose was calculated. The overall image quality was subjectively rated by the referring physician on a 4-point scale (IQ score: 1 excellent, 2 good, 3 poor but interpretable, 4 poor not interpretable). Image quality was quantitatively evaluated measuring noise in the liver. Results: CT Results: Effective dose was progressively reduced from 9.5 ± 2.8 to 8.0 ± 2.3 and 6.2 ± 1.5 mSv (p 2) did not increase. PET Results: Effective dose was gradually reduced from 6.5 ± 1.4 to 5.7 ± 1.3 and 5.0 ± 1.0 mSv (p < 0.001). Average dose reduction was 23.4%. IQ score (p < 0.05) and noise (p < 0.001) significantly degraded for lower activity protocols. However, all images with reduced activity were scored as interpretable (IQ score ≀ 3). Conclusions: A significant radiation dose reduction of 28.7% was reached. Despite a slight reduction in image quality, the new regime was successfully implemented with readers reporting unchanged clinical confidence

    Hospital-based proton therapy implementation during the COVID pandemic: early clinical and research experience in a European academic institution

    No full text
    Introduction A rapid deploy of unexpected early impact of the COVID pandemic in Spain was described in 2020. Oncology practice was revised to facilitate decision-making regarding multimodal therapy for prevalent cancer types amenable to multidisciplinary treatment in which the radiotherapy component searched more efcient options in the setting of the COVID-19 pandemic, minimizing the risks to patients whilst aiming to guarantee cancer outcomes. Methods A novel Proton Beam Therapy (PBT), Unit activity was analyzed in the period of March 2020 to March 2021. Institutional urgent, strict and mandatory clinical care standards for early diagnosis and treatment of COVID-19 infection were stablished in the hospital following national health-authorities’ recommendations. The temporary trends of patients care and research projects proposals were registered. Results 3 out of 14 members of the professional staf involved in the PBR intra-hospital process had a positive test for COVID infection. Also, 4 out of 100 patients had positive tests before initiating PBT, and 7 out of 100 developed positive tests along the weekly mandatory special checkup performed during PBT to all patients. An update of clinical performance at the PBT Unit at CUN Madrid in the initial 500 patients treated with PBT in the period from March 2020 to November 2022 registers a distribution of 131 (26%) pediatric patients, 63 (12%) head and neck cancer and central nervous system neoplasms and 123 (24%) re-irradiation indications. In November 2022, the activity reached a plateau in terms of patients under treatment and the impact of COVID pandemic became sporadic and controlled by minor medical actions. At present, the clinical data are consistent with an academic practice prospectively (NCT05151952). Research projects and scientifc production was adapted to the pandemic evolution and its infuence upon professional time availability. Seven research projects based in public funding were activated in this period and preliminary data on molecular imaging guided proton therapy in brain tumors and post-irradiation patterns of blood biomarkers are reported. Conclusions Hospital-based PBT in European academic institutions was impacted by COVID-19 pandemic, although clinical and research activities were developed and sustained. In the post-pandemic era, the benefts of online learning will shape the future of proton therapy education
    corecore